The Fourth Paradigm: Data-Intensive Scientific Discovery

Tony Hey
Corporate Vice President
Microsoft External Research
Tony Hey – An Introduction

Commander of the British Empire

This work is licensed under a Creative Commons Attribution 3.0 United States License.
The Fourth Paradigm
A Digital Data Deluge in Research

• Data collection
 – Sensor networks, satellite surveys, high throughput laboratory instruments, observation devices, supercomputers, LHC …

• Data processing, analysis, visualization
 – Legacy codes, workflows, data mining, indexing, searching, graphics …

• Archiving
 – Digital repositories, libraries, preservation, …

SensorMap
Functionality: Map navigation
Data: sensor-generated temperature, video camera feed, traffic feeds, etc.

Scientific visualizations
NSF Cyberinfrastructure report, March 2007
Emergence of a Fourth Research Paradigm

1. Thousand years ago – **Experimental Science**
 - Description of natural phenomena

2. Last few hundred years – **Theoretical Science**
 - Newton’s Laws, Maxwell’s Equations…

3. Last few decades – **Computational Science**
 - Simulation of complex phenomena

4. Today – **Data-Intensive Science**
 - Scientists overwhelmed with data sets from many different sources
 - Data captured by instruments
 - Data generated by simulations
 - Data generated by sensor networks
 - eScience is the set of tools and technologies to support data federation and collaboration
 - For analysis and data mining
 - For data visualization and exploration
 - For scholarly communication and dissemination

Astronomy has been one of the first disciplines to embrace data-intensive science with the Virtual Observatory (VO), enabling highly efficient access to data and analysis tools at a centralized site. The image shows the Pleiades star cluster form the Digitized Sky Survey combined with an image of the moon, synthesized within the WorldWide Telescope service.

Science must move from data to information to knowledge

With thanks to Jim Gray
1. EARTH AND ENVIRONMENT

3 INTRODUCTION Dan Feay
5 GRAY’S LAMIC DATABASE-CENTRIC COMPUTING IN SCIENCE
 Alexander S. Szalay, Josef H. Minkley
13 THE EMERGING SCIENCE OF ENVIRONMENTAL APPLICATIONS
 Jeff Dezaer, William B. Gull
21 REDDEFINING ECOLOGICAL SCIENCE USING DATA
 James R. Hunt, Dennis D. Baldocchi, Catherine van Ingen
27 A 2020 VISION FOR OCEAN SCIENCE
 John R. Delaney, Roger S. Burga
39 BRINGING THE NIGHT SKY CLOSER: DISCOVERIES IN THE DATA DELUGE
 Alyss A. Goodman, Curtis G. Wong
45 INSTRUMENTING THE EARTH: NEXT-GENERATION SENOR NETWORKS AND ENVIRONMENTAL SCIENCE
 Michael Lehning, Nikolas Daves, Mathian Binyu, Marc Parange, Simon Naft, Feng Zhao

2. HEALTH AND WELLBEING

55 INTRODUCTION Simon Mercer
57 THE HEALTHCARE SINGULARITY AND THE AGE OF SEMANTIC MEDICINE
 Michael Gillam, Craig Fried, Jonathan Handel, Eliza Moody, Ben Standerman, Catherine Pleissant, Mark Smith, John Dickson
65 HEALTHCARE DELIVERY IN DEVELOPING COUNTRIES:
 CHALLENGES AND POTENTIAL SOLUTIONS
 Joel Robertson, Del Delhart, Kristin Tolle, David Heckerman
75 DISCOVERING THE WIRING DIAGRAM OF THE BRAIN
 Jeff W. Lichtman, Jiayi Bird, Hansper Peters, Michael F. Cohen
83 TOWARD A COMPUTATIONAL MICROSCOPE FOR NEUROBIOLOGY
 Eric Horvitz, William Kristan
91 A UNIFIED MODELING APPROACH TO DATA-INTENSIVE HEALTHCARE
 Iain Buchan, John Wise, Chris Bishop
99 VISUALIZATION IN PROCESS ALGEBRA MODELS OF BIOLOGICAL SYSTEMS
 Luca Cardelli, Corrado Prisat

3. SCIENTIFIC INFRASTRUCTURE

109 INTRODUCTION Darren Green
111 A NEW PATH FOR SCIENCE Mark R. Abbott
117 BEYOND THE TEUMAPE: DEVELOPING THE INFRASTRUCTURE TO DEAL WITH LIFE SCIENCES DATA
 Christopher Southam, Graham Cameron
125 MULTICORE COMPUTING AND SCIENTIFIC DISCOVERY
 James Larus, Dennis Gannon
131 PARADIGM AND THE CLOUD Dennis Gannon, Dan Reed
137 THE IMPACT OF WORKFLOW TOOLS ON DATA-CENTRIC RESEARCH
 Carole Goble, David De Bais
147 SEMANTIC SCIENCE: DECODING MEANING IN NEXT-GENERATION DIGITALLY ENHANCED SCIENCE Peter Fox, James Nendler
153 VISUALIZATION FOR DATA-INTENSIVE SCIENCE
 Charles Hansen, Chris B. Johnson, Valerie Pasucci, Claudia T. Silva
165 A PLATFORM FOR ALL THAT WE KNOW: CREATING A KNOWLEDGE-DRIVEN RESEARCH INFRASTRUCTURE Susan Petersen

4. SCHOLARLY COMMUNICATION

175 INTRODUCTION Lee Brinks
177 JIM GRAY’S FOURTH PARADIGM AND THE CONSTRUCTION OF THE SCIENTIFIC RECORD
 Clifford Lynch
185 TEXT IN A DATA-CENTRIC WORLD Paul Ginsparg
193 ALL ASIDED TOWARD A MACHINE-FRIENDLY SCHOLARLY COMMUNICATION SYSTEM
 Herbert Van de Sompel, Carl Langue
201 THE FUTURE OF DATA POLICY Anne Fitzgerald, Brian Fitzgerald, Kyle Pappalardo
209 I HAVE SEEN THE PARADIGM SHIFT, AND IT IS US
 John Wilbanks
215 FROM WEB 2.0 TO THE GLOBAL DATABASE
 Timo Harney
“The impact of Jim Gray’s thinking is continuing to get people to think in a new way about how data and software are redefining what it means to do science.”

— Bill Gates, Chairman, Microsoft Corporation

“One of the greatest challenges for 21st-century science is how we respond to this new era of data-intensive science. This is recognized as a new paradigm beyond experimental and theoretical research and computer simulations of natural phenomena—one that requires new tools, techniques, and ways of working.”

— Douglas Kell, University of Manchester

“The contributing authors in this volume have done an extraordinary job of helping to refine an understanding of this new paradigm from a variety of disciplinary perspectives.”

— Gordon Bell, Microsoft Research
Jim Gray’s Call to Action

Listed 7 key areas for action by Funding Agencies:

1. Fund both development and support of software tools
2. Invest at all levels of the finding ‘pyramid’
3. Fund development of ‘generic’ Laboratory Information Management Systems
4. Fund research into scientific data management, data analysis, data visualization, new algorithms and tools
Jim Gray’s Call to Action (continued)

Remaining three key areas for action relate to the future of Scholarly Communication and Libraries:

5. Establish Digital Libraries that support the other sciences like the NLM does for Medicine

6. Fund development of new authoring tools and publication models

7. Explore development of digital data libraries that contain scientific data (not just the metadata) and support integration with published literature
Developing a Sustainable e-Infrastructure
Accelerating time to insight with Advanced Research Tools and Services

Our goal is to accelerate research by collaborating with academic communities to use advanced computer science research technologies.

Aim to help scientists spend less time on IT issues and more time on science by creating open tools and services based on Microsoft platforms and productivity software.

This work is licensed under a Creative Commons Attribution 3.0 United States License.
Data Acquisition and Modeling

The Swiss Experiment
• Powerful Software Improves Environmental Forecasting
• Environmental scientists face many challenges in monitoring and understanding our planet’s changing climate. Through an international collaboration called the Swiss Experiment, environmental scientists and computer science experts are deploying advanced sensor networks and data management tools to improve environmental monitoring and forecasting.

Life Under Your Feet
• Researchers at The Johns Hopkins University are deploying large arrays of wireless soil sensors in a variety of environmental settings, including a park, an urban forest and a wetland. The networks enable scientists to monitor ecological changes on an unprecedented scale and offer insights into hydrology, greenhouse gases and the activity of organisms in the soil.
Research Information Center

Collaboration and information sharing among researchers are among the most important but challenging aspects of scientific research. In recent years, scientists have begun using “virtual research environments” to exchange information with colleagues in specific areas of study. Microsoft Research and The British Library are teaming up to build the Research Information Centre.

SciScope -- Speeds Data Retrieval from Multiple Repositories

For environmental scientists and engineers, finding and retrieving relevant data can be a daunting and tedious task. Microsoft Research is developing an online search engine called SciScope that enables researchers to search multiple data repositories simultaneously and retrieve information in a consistent format.
Analysis and Data Mining

Trident
• A Scientific Workflow Workbench Brings Clarity to Data
• Scientists at the University of Washington are working with Microsoft External Research to demonstrate how marrying visualization and workflow technologies can allow researchers to better manage, evaluate and interact with even the most complex scientific datasets.

PhyloD
• Statistical tool used to analyze DNA of HIV from large studies of infected patients
• Typical job, 10 – 20 CPU hours with extreme jobs requiring 1K – 2K CPU hours
 – Very CPU efficient
 – Requires a large number of test runs for a given job (1 – 10M tests)
 – Highly compressed data per job (~100 KB per job)

This work is licensed under a Creative Commons Attribution 3.0 United States License.
Chem4Word

• Chemistry Drawing in Word

• Created in collaboration with University of Cambridge; Peter Murray-Rust, et al.

Intent: Recognizes chemical dictionary and ontology terms

Author/edit 1D and 2D chemistry. Change chemical layout styles.

Relationships: Navigate and link referenced chemistry

Data: Semantics stored in Chemistry Markup Language

Intelligence: Verifies validity of authored chemistry

<?xml version="1.0"?>
<atomArray>
 <atom id="a1" elementType="C" x2="-2.915" y2="0.77"/>
 <atom id="a2" elementType="C" x2="1.581" y2="1.54"/>
 <atom id="a3" elementType="O" x2="-0.248" y2="0.769"/>
 <atom id="a4" elementType="O" x2="-1.581" y2="3.08"/>
 <atom id="a5" elementType="H" x2="-4.249" y2="1.54"/>
 <atom id="a6" elementType="H" x2="2.915" y2="-0.77"/>
 <atom id="a7" elementType="H" x2="-4.249" y2="-1.907"/>
 <atom id="a8" elementType="H" x2="1.086" y2="1.54"/>
</atomArray>

<?xml version="1.0"?>
<atomArray>
 <atom id="a1" elementType="C" x2="-2.915" y2="0.77"/>
 <atom id="a2" elementType="C" x2="1.581" y2="1.54"/>
 <atom id="a3" elementType="O" x2="-0.248" y2="0.769"/>
 <atom id="a4" elementType="O" x2="-1.581" y2="3.08"/>
 <atom id="a5" elementType="H" x2="-4.249" y2="1.54"/>
 <atom id="a6" elementType="H" x2="2.915" y2="-0.77"/>
 <atom id="a7" elementType="H" x2="-4.249" y2="-1.907"/>
 <atom id="a8" elementType="H" x2="1.086" y2="1.54"/>
</atomArray>
Disseminate and Share

Ontology Plug-In for Word

• John Wilbanks

Services: Ontology download web service

Intent: Term recognition & disambiguation

Relationships: Ontology browser

This work is licensed under a Creative Commons Attribution 3.0 United States License.
Archiving and Preservation

A semantic computing platform to store and expose relationships between digital assets

Zentity

Default web UI with CSS support and custom ASP.Net controls

Native support for RSS, OAI-PMH, OAI-ORE, AtomPub and SWORD

Flexible data model enables many scenarios and can be easily extended over time
Archiving and Preservation

oreChem – the Chemical Semantic Web

Semantic storage

Mash-up (re-use) data

Compound document authoring

This work is licensed under a Creative Commons Attribution 3.0 United States License.
Node XL
Network analysis and visualization tool

- Network analysis is of growing importance in academic, commercial, and Internet social media contexts
- Existing Social Network Tools are challenging for many novice users
- Tools like Excel are widely used
- Leveraging a spreadsheet as a host for Social Network Analysis lowers barriers to network data analysis and display

Leverage spreadsheet for storage of edge and vertex data

Apply dynamic filters to the data

This work is licensed under a Creative Commons Attribution 3.0 United States License.
Creative Commons Add-in for Office 2007

Intent: Insert Creative Commons licenses from within Office 2007

Services: Integrates with Creative Commons Web API to create new licenses

Relationships: license information stored as RDF XML within the document OOXML

This work is licensed under a Creative Commons Attribution 3.0 United States License.

http://ccaddin2007.codeplex.com
The Future Research e-Infrastructure: Client + Cloud
PhyloD as an Azure Cloud Service

- Statistical tool used to analyze DNA of HIV from large studies of infected patients
- PhyloD was developed by Microsoft Research and has been highly impactful
- Small but important group of researchers
 - 100’s of HIV and HepC researchers actively use it
 - 1000’s of research communities rely on these results
- Typical job, 10 – 20 CPU hours with extreme jobs requiring 1K – 2K CPU hours
 - Very CPU efficient
 - Requires a large number of test runs for a given job (1 – 10M tests)
 - Highly compressed data per job (~100 KB per job)

- PhyloD now ported as Windows Azure Cloud Service
- Cloud enables agile deployment of scalable scientific services
AzureMODIS – Azure Service for Remote Sensing Geoscience

- Science pipeline for download, initial processing and reduction of satellite imagery. Developed by MSR, UVa, UCB.
- Dramatically lowers resource and complexity barriers to use satellite imagery for terrestrial hydrology and geoscience.
 - Common imagery location determination and upload from diverse sources
 - Common reprojection and harmonization to produce science-ready imagery with the same length, time and quality attributes
 - Optional scientist-provided reduction algorithm (.NET, Java, or MatLab)
 - On-demand scalability beyond local desktop or cluster
- In use now to compute 10 year continental scale water balance for North America. Per year:
 - 500 GB (~60K files) upload of 9 different source imagery products from 15 different locations
 - 400 GB reprojected harmonized imagery consuming ~3500 cpu hours
 - 5 GB reduced science result leveraging reported field data aggregates consuming ~60 cpu hour
- Additional science requests pending
 - Expanding above to Europe
 - Additional source imagery products and formats

Catharine van Ingen (MSR), Jie Li, Marty Humphreys (UVA), Youngryel Ryu (UCB), Deb Agarwal (BWC/LBL)

Source Imagery Download Sites

Request Queue

Data Collection Stage

Source Metadata

AzureMODIS Service Web Role Portal

Reprojection Queue

Reprojection Stage

Reduction Queue

Analysis/Reduction Stage

Scientist

Scientific Results

This work is licensed under a Creative Commons Attribution 3.0 United States License.
Project JUNIOR
Demonstrating the Value of Azure Cloud Services for Science

• Led by Newcastle University, UK (Paul Watson), project supported by ER
 – Investigating applicability of commercial clouds for scientific research
 – Build a working prototype for use-cases in chemo-informatics
 – Uses Microsoft technologies to build science-related services (Windows Azure, Silverlight...)

• Built initial proof-of-concept
 – Silverlight UI for basic Quantitative Structure-Analysis Relationship (QSAR) modeling
 – Demonstrated ability to scale QSAR computations in Windows Azure
Moving to a world where all data is linked ...

- Data/information is interconnected through machine-interpretable information (e.g. paper X is about star Y)
- Social networks are a special case of ‘data meshes’

- A knowledge ecosystem:
 - A richer authoring experience
 - An ecosystem of services
 - Semantic storage
 - Open, Collaborative, Interoperable, and Automatic

Attribution: Chris Bizer
... and can be stored/analyzed in the Cloud

Vision of Future Research
e-Infrastructure using
Client + Cloud resources
Where to download the tools
research.microsoft.com/en-us/collaboration/tools

The site contains access and downloads of relevant open tools and resources for the worldwide academic research community. Examples of our open tools and services:

Plug-ins for Office
- Ontology Add-in for Word
- Article Authoring Add-in for Word
- Chem4Word – Chemistry Drawing in Word

Microsoft Biology Foundation MBF
Enables and accelerates fundamental advances in biology

F#
Collaboration with the academic and research community on F#’s typed functional and object-oriented programming on the .NET platform

Software Engineering Tools
- Spec#: Program verifier for C# extended with design by contract
- VCC: Program verifier for Concurrent C
- PEX: automatic unit testing tool for .NET
- CHESS: Unit testing tools for concurrent Win32 executable and .NET
Resources

• Microsoft Research
 – http://research.microsoft.com
 – Microsoft Research downloads: http://research.microsoft.com/research/downloads

• Microsoft External Research
 – http://research.microsoft.com/externalresearch

• Science at Microsoft

• CodePlex

• The Faculty Connection

• MSDN Academic Alliance